Corpus ID: 67855876; Multi-Object Representation Learning with Iterative Variational Inference @inproceedings{Greff2019MultiObjectRL, title={Multi-Object Representation Learning with Iterative Variational Inference}, author={Klaus Greff and Raphael Lopez Kaufman and Rishabh Kabra and Nicholas Watters and Christopher P. Burgess and Daniel Zoran and Lo{\"i}c Matthey and Matthew M. Botvinick and . Choosing the reconstruction target: I have come up with the following heuristic to quickly set the reconstruction target for a new dataset without investing much effort: Some other config parameters are omitted which are self-explanatory. >> 0 Since the author only focuses on specific directions, so it just covers small numbers of deep learning areas. preprocessing step. 3D Scenes, Scene Representation Transformer: Geometry-Free Novel View Synthesis 0 This work presents a simple neural rendering architecture that helps variational autoencoders (VAEs) learn disentangled representations that improves disentangling, reconstruction accuracy, and generalization to held-out regions in data space and is complementary to state-of-the-art disentangle techniques and when incorporated improves their performance. "DOTA 2 with Large Scale Deep Reinforcement Learning. 0 share Human perception is structured around objects which form the basis for our higher-level cognition and impressive systematic generalization abilities. Multi-Object Representation Learning with Iterative Variational Inference 03/01/2019 by Klaus Greff, et al. << The experiment_name is specified in the sacred JSON file. Moreover, to collaborate and live with Kamalika Chaudhuri, Ruslan Salakhutdinov - GitHub Pages Promising or Elusive? Unsupervised Object Segmentation - ResearchGate Klaus Greff,Raphal Lopez Kaufman,Rishabh Kabra,Nick Watters,Christopher Burgess,Daniel Zoran,Loic Matthey,Matthew Botvinick,Alexander Lerchner. Multi-Object Representation Learning with Iterative Variational Inference Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. [ 0 Klaus Greff, et al. Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, Mitigating Embedding and Class Assignment Mismatch in Unsupervised Image Classification, Improving Unsupervised Image Clustering With Robust Learning, InfoBot: Transfer and Exploration via the Information Bottleneck, Reinforcement Learning with Unsupervised Auxiliary Tasks, Learning Latent Dynamics for Planning from Pixels, Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images, DARLA: Improving Zero-Shot Transfer in Reinforcement Learning, Count-Based Exploration with Neural Density Models, Learning Actionable Representations with Goal-Conditioned Policies, Automatic Goal Generation for Reinforcement Learning Agents, VIME: Variational Information Maximizing Exploration, Unsupervised State Representation Learning in Atari, Learning Invariant Representations for Reinforcement Learning without Reconstruction, CURL: Contrastive Unsupervised Representations for Reinforcement Learning, DeepMDP: Learning Continuous Latent Space Models for Representation Learning, beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework, Isolating Sources of Disentanglement in Variational Autoencoders, InfoGAN: Interpretable Representation Learning byInformation Maximizing Generative Adversarial Nets, Spatial Broadcast Decoder: A Simple Architecture forLearning Disentangled Representations in VAEs, Challenging Common Assumptions in the Unsupervised Learning ofDisentangled Representations, Contrastive Learning of Structured World Models, Entity Abstraction in Visual Model-Based Reinforcement Learning, Reasoning About Physical Interactions with Object-Oriented Prediction and Planning, MONet: Unsupervised Scene Decomposition and Representation, Multi-Object Representation Learning with Iterative Variational Inference, GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent Representations, Generative Modeling of Infinite Occluded Objects for Compositional Scene Representation, SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition, COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration, Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions, Unsupervised Video Object Segmentation for Deep Reinforcement Learning, Object-Oriented Dynamics Learning through Multi-Level Abstraction, Language as an Abstraction for Hierarchical Deep Reinforcement Learning, Interaction Networks for Learning about Objects, Relations and Physics, Learning Compositional Koopman Operators for Model-Based Control, Unmasking the Inductive Biases of Unsupervised Object Representations for Video Sequences, Workshop on Representation Learning for NLP. Like with the training bash script, you need to set/check the following bash variables ./scripts/eval.sh: Results will be stored in files ARI.txt, MSE.txt and KL.txt in folder $OUT_DIR/results/{test.experiment_name}/$CHECKPOINT-seed=$SEED. 0 ", Berner, Christopher, et al. There was a problem preparing your codespace, please try again. The number of refinement steps taken during training is reduced following a curriculum, so that at test time with zero steps the model achieves 99.1% of the refined decomposition performance. This uses moviepy, which needs ffmpeg. objects with novel feature combinations. understand the world [8,9]. /Outlines 9 We take a two-stage approach to inference: first, a hierarchical variational autoencoder extracts symmetric and disentangled representations through bottom-up inference, and second, a lightweight network refines the representations with top-down feedback.